4.7 Article

Automatic creation of semantically rich 3D building models from laser scanner data

Journal

AUTOMATION IN CONSTRUCTION
Volume 31, Issue -, Pages 325-337

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.autcon.2012.10.006

Keywords

Interior modeling; 3D modeling; Scan to BIM; Lidar object recognition; Wall analysis; Opening detection

Funding

  1. National Science Foundation [0856558]
  2. Pennsylvania Infrastructure Technology Alliance
  3. Div Of Civil, Mechanical, & Manufact Inn
  4. Directorate For Engineering [0856558] Funding Source: National Science Foundation

Ask authors/readers for more resources

In the Architecture, Engineering, and Construction (AEC) domain, semantically rich 3D information models are increasingly used throughout a facility's life cycle for diverse applications, such as planning renovations, space usage planning, and managing building maintenance. These models, which are known as building information models (BIMs), are often constructed using dense, three dimensional (3D) point measurements obtained from laser scanners. Laser scanners can rapidly capture the as-is conditions of a facility, which may differ significantly from the design drawings. Currently, the conversion from laser scan data to BIM is primarily a manual operation, and it is labor-intensive and can be error-prone. This paper presents a method to automatically convert the raw 3D point data from a laser scanner positioned at multiple locations throughout a facility into a compact, semantically rich information model. Our algorithm is capable of identifying and modeling the main visible structural components of an indoor environment (walls, floors, ceilings, windows, and doorways) despite the presence of significant clutter and occlusion, which occur frequently in natural indoor environments. Our method begins by extracting planar patches from a voxelized version of the input point cloud. The algorithm learns the unique features of different types of surfaces and the contextual relationships between them and uses this knowledge to automatically label patches as walls, ceilings, or floors. Then, we perform a detailed analysis of the recognized surfaces to locate openings, such as windows and doorways. This process uses visibility reasoning to fuse measurements from different scan locations and to identify occluded regions and holes in the surface. Next, we use a learning algorithm to intelligently estimate the shape of window and doorway openings even when partially occluded. Finally, occluded surface regions are filled in using a 3D inpainting algorithm. We evaluated the method on a large, highly cluttered data set of a building with forty separate rooms. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available