4.7 Article

Mechanics and dynamics of general milling cutters. Part II: inserted cutters

Journal

INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE
Volume 41, Issue 15, Pages 2213-2231

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0890-6955(01)00046-3

Keywords

inserted cutters; cutting forces; chatter vibrations

Ask authors/readers for more resources

Inserted cutters are widely used in roughing and finishing of parts. The insert geometry and distribution of inserts on the cutter body vary significantly in industry depending on the application. This paper presents a generalized mathematical model of inserted cutters for the purpose of predicting cutting forces, vibrations, dimensional surface finish and stability lobes in milling. In this paper, the edge geometry is defined in the local coordinate system of each insert, and placed and oriented on the cutter body using the cutter's global coordinate system. The cutting edge locations are defined mathematically, and used in predicting the chip thickness distribution along the cutting zone. Each insert may have a different geometry, such as rectangular, convex triangular or a mathematically definable edge. Each insert can be placed on the cutter body mathematically by providing the coordinates of the insert center with respect to the cutter body center. The inserts can be oriented by rotating them around the cutter body, thus each insert may be assigned to have different lead and axial rake angles. By solving the mechanics and dynamics of cutting at each edge point, and integrating them over the contact zone, it is shown that the milling process can be predicted for any inserted cutter. A sample of inserted cutter modeling and analysis examples are provided with experimental verifications. (C) 2001 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available