4.7 Article

Antisense-induced down-regulation of thymidylate synthase and enhanced cytotoxicity of 5-FUdR in 5-FUdR-resistant HeLa cells

Journal

BRITISH JOURNAL OF PHARMACOLOGY
Volume 134, Issue 7, Pages 1437-1446

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.bjp.0704394

Keywords

antisense; thymidylate synthase; drug resistance; 5-fluorodeoxyuridine

Ask authors/readers for more resources

1 Thymidylate synthase (TS) is a target for several anticancer drugs. We previously showed that an antisense oligodeoxynucleotide (ODN) directed against TS mRNA down-regulated TS protein and enhanced cytotoxicity of TS-targeting drugs [including 5-fluorodeoxyuridine (5-FUdR)] in HeLa cells. Patient tumours with increased TS expression are resistant to TS-targeting drugs. It was hypothesized that TS mRNA and consequently TS protein could be down-regulated in 5-FUdR-resistant cells that overexpress TS, sensitizing them to 5-FUdR cytotoxicity. In this study we assessed the capacity of an anti-TS antisense ODN to circumvent resistance dependent on TS overexpression. 2 Variant HeLa clones exhibiting 2-20 fold resistance to 5-FUdR were selected by exposing cultured cells to drug. Clones FUdR-5a, -25b, and -50a expressed TS protein levels 10 fold, 10 fold, and 17 fold higher (respectively) than parental cells. Cells were treated with antisense ODN 83 (a 2'-methoxy-ethoxylated, phosphorothioated 20-mer, complementary to a portion of the 3'-untranslated region of TS mRNA), or ODN 32 (a control ODN with the same base composition as ODN 83, but in randomized order). Twenty-four and 48 h following transfection (50-100 nm ODN, plus polycationic liposome), TS mRNA levels (by RT-PCR) and protein levels (by radiolabelled 5-FUdR-monophosphate binding) were decreased by at least 60% in ODN 83-treated cells compared with control ODN 32-treated cells. ODN 83 enhanced the cytotoxicity of 5-FUdR by up to 85% in both parental and 5-FUdR-resistant cell lines. 3 Antisense ODN can be used to down-regulate TS and attenuate drug resistance in TS-overexpressing cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available