4.7 Article

Decision tree for selecting retaining wall systems based on logistic regression analysis

Journal

AUTOMATION IN CONSTRUCTION
Volume 19, Issue 7, Pages 917-928

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.autcon.2010.06.005

Keywords

Retaining wall systems; Logistic regression; Decision tree

Funding

  1. Ministry of Construction & Transportation (MOCT), Korea
  2. Korea Institute of Construction and Transportation in Technology Evaluation and Planning (KICTTEP) [05 RND Core Technology D02-01]

Ask authors/readers for more resources

Machine learning techniques generally require thousands of cases to derive a reliable conclusion, but such a large number of excavation cases are very difficult to acquire in the construction domain. There have been efforts to develop retaining wall selection systems using machine learning techniques but based only on a couple of hundred cases of excavation work. The resultant rules were inconsistent and unreliable. This paper proposes an improved decision tree for selecting retaining wall systems. After retaining wall systems were divided into three components, i.e., the retaining wall, the lateral support, and optional grouting, a series of logistic regression analyses, analysis of variance (ANOVA), and chi-square tests were used to derive the variables and a decision tree for selecting retaining wall systems. The prediction accuracy rates for the retaining walls, lateral supports, and grouting were 82.6%, 80.4%, and 76.9%, respectively. These values were higher than the prediction accuracy rate (58.7%) of the decision tree built by an automated machine learning algorithm, Classification and Regression Trees (CART), with the same data set. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available