4.6 Article

Structure and electrical levels of point defects in monoclinic zirconia

Journal

PHYSICAL REVIEW B
Volume 64, Issue 22, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.64.224108

Keywords

-

Ask authors/readers for more resources

We performed plane wave density functional theory (DFT) calculations of formation energies, relaxed structures, and electrical levels of oxygen vacancies and interstitial oxygen atoms in monoclinic zirconia. The atomic structures of positively and negatively charged vacancies and interstitial oxygen atoms are also investigated. The ionization energies and electron affinities of interstitial oxygen atoms and oxygen vacancies in different charge states are calculated with respect to the bottom of the zirconia conduction band. Using the experimental band offset values at the interface Of ZrO2 films grown on silicon, we have found the positions of defect levels with respect to the bottom of silicon conduction band. The results demonstrate that interstitial oxygen atoms and positively charged oxygen vacancies can trap electrons from the bottom of the zirconia conduction band and from silicon. Neutral oxygen vacancy serves as a shallow hole trap for electrons injected from the silicon valence band. The calculations predict negative U for the O- center and stability of V+ centers with respect to disproportionation into V2+ and V-0 in monoclinic zirconia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available