4.5 Article

MR microscopy of multicomponent diffusion in single neurons

Journal

MAGNETIC RESONANCE IN MEDICINE
Volume 46, Issue 6, Pages 1107-1112

Publisher

WILEY
DOI: 10.1002/mrm.1306

Keywords

diffusion; compartmentalization; microcoils; microscopy; neurons

Funding

  1. NINDS NIH HHS [R01 NS36992] Funding Source: Medline

Ask authors/readers for more resources

This study examines multicomponent diffusion in isolated single neurons and discusses the implications of the results for macroscopic water diffusion in tissues. L7 Aplysia neurons were isolated and analyzed using a 600 MHz Bruker wide-bore instrument with a magnetic susceptibility-matched radiofrequency microcoil. Using a biexponential fit, the apparent diffusion coefficients (ADCs) from the cytoplasm (with relative fraction) were 0.48 +/- 0.14 x 10(-3) mm(2)S(-1) (61 +/- 11%) for the fast component, and 0.034 +/- 0.017 x 10(-3) mm(2)s(-1) (32 +/- 11 %) for the slow component (N = 10). Diffusion in the nucleus appears to be primarily monoexponential, but with biexponential analysis it yields 1.31 +/- 0.32 x 10(-3) mm(2)s(-1) (89 +/- 6%) for the fast component and 0.057 +/- 0.073 x 10(-3) mm(2)s(-1) (11 +/- 6%) for the slow (N = 5). The slow component in the nucleus may be explained by cytoplasmic volume averaging. These data demonstrate that water diffusion in the cytoplasm of isolated single Aplysia neurons supports a multiexponential model. The ADCs are consistent with previous measurements in the cytoplasm of single neurons and with the slow ADC measurement in perfused brain slices. These distributions may explain the multiple compartments observed in tissues, greatly aiding the development of quantitative models of MRI in whole tissues. (C) 2001 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available