4.4 Review

AMP-activated protein kinase: the energy charge hypothesis revisited

Journal

BIOESSAYS
Volume 23, Issue 12, Pages 1112-1119

Publisher

WILEY
DOI: 10.1002/bies.10009

Keywords

-

Ask authors/readers for more resources

The AMP-activated protein kinase cascade is a sensor of cellular energy charge, and its existence provides strong support for the energy charge hypothesis first proposed by Daniel Atkinson in the 1960s. The system is activated in an ultrasensitive manner by cellular stresses that deplete ATP (and consequently elevate AMP), either by inhibiting ATP production (e.g., hypoxia), or by accelerating ATP consumption (e.g., exercise in muscle). Once activated, it switches on catabolic pathways, both acutely by phosphorylation of metabolic enzymes and chronically by effects on gene expression, and switches off many ATP-consuming processes. Recent work suggests that activation of AMPK is responsible for many of the effects of physical exercise, both the rapid metabolic effects and the adaptations that occur during training. Dominant mutations in regulatory subunit isoforms (gamma2 and gamma3) of AMPK, which appear to increase the basal activity in the absence of AMP, lead to hypertrophy of cardiac and skeletal muscle respectively. (C) 2001 John Wiley & Sons, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available