4.5 Article

Time course of atrial fibrillation-induced cellular structural remodeling in atria of the goat

Journal

JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY
Volume 33, Issue 12, Pages 2083-2094

Publisher

ELSEVIER SCI LTD
DOI: 10.1006/jmcc.2001.1472

Keywords

atrial fibrillation; ultrastructure; histology; remodeling; dedifferentiation

Ask authors/readers for more resources

Background: Previously we documented cellular structural changes of a non-degenerative nature in atrial myocytes after atrial fibrillation (AF) in the goat. The time course of these changes was not studied. Methods and Results: Cellular structural changes were studied by light- and electron microscopy and immunohistochemistry in goat atria after 0-16 weeks AF. The first sign of cellular structural remodeling was a more homogeneous chromatin distribution, at 1 week of AF. Sub-structural changes in mitochondria and sarcoplasmic reticulum occurred gradually. Cellular degeneration was absent. The degree of myolysis and glycogen accumulation increased till 8 weeks of AF and did not increase further from thereon. After 16 weeks of AF, 42% of the myocytes in the right atrial free wall were affected by myolysis. The diameter of the atrial myocytes increased. Dedifferentiation of the atrial myocytes was suggested by altered expression patterns of structural proteins, such as the disappearance of cardiotin (1 week), the A-I junctional part of titin (4 weeks), desmin at the intercalated disk (ID) (8 weeks) and a gradual re-expression of alpha-smooth muscle actin. Conclusion: Remodeling of the cellular ultrastructure in atrial myocardium of the goat develops progressively during AF. Re-expression of fetal proteins indicate dedifferentiation of atrial myocytes, analogous to observations in hibernating myocardium of the ventricle. (C) 2001 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available