4.3 Article Proceedings Paper

Status of organochlorine (DDT) pollutants and steps toward electrocatalytic reductions

Journal

PURE AND APPLIED CHEMISTRY
Volume 73, Issue 12, Pages 1907-1916

Publisher

INT UNION PURE APPLIED CHEMISTRY
DOI: 10.1351/pac200173121907

Keywords

-

Ask authors/readers for more resources

The accumulation of DDT in the environment over the years is a major concern in the world today. The extent to which DDT may be absorbed and translocated from C-14-p,p'-DDT contaminated soils into cowpea plant tissues, and the variation of uptake of p,p'-DDT by the plants in relation to the dissipation of p,p'-DDT in the soils was studied using a radioisotope technique. Significant absorption and accumulation of residues was observed for the cowpeas grown in two different sites, coastal and highland regions. The degree of uptake varied with soil type and growing conditions. Further results indicated that the higher the water retention by the soil the higher the rate of evaporation of p,p'-DDT. Coastal region p,p'-DDT soil samples showed DDE to be the major metabolite. DDT residue in the plants ranged from 0.94 to 7.73 mg/kg, while that in the soils ranged from 88.9 to 32.0 mg/kg. Preliminary electrode reactions indicated lowering of overpotential for reduction of p-chlorophenol by about 1 V, using copper phthalocyanine tetrasodium tetrasulfonate as the catalyst in microemulsion. Microemulsions and appropriate catalysts are a promising system for the decomposition of DDT.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available