4.0 Article

Use of LIF for real-time in-situ mixed NAPL source zone detection

Journal

GROUND WATER MONITORING AND REMEDIATION
Volume 21, Issue 1, Pages 67-76

Publisher

WILEY
DOI: 10.1111/j.1745-6592.2001.tb00632.x

Keywords

-

Ask authors/readers for more resources

he site characterization and analysis cone penetrometer system (SCAPS), equipped with realtime fluorophore detection capabilities, was used to delineate subsurface contaminant releases in an area where plating shop waste was temporarily stored. Records indicated that various nonaqueous phase liquids (NAPLs) were released at the site. The investigators advanced the SCAPS laser-induced fluorescence (LIF) sensor to depths beneath the water table of the principal water-bearing zone. The water table was located approximately 6 feet (1.8 m) below ground surface (bgs) across the site. Fluorescence, attributed to fuel compounds commingled with chlorinated solvents, was observed at depths ranging from 4.0 to 11.5 feet (1.2 to 3.5 m) bgs. Fluorescence, attributed to naturally occurring organic materials (by process of elimination and spectral characteristics) commingled with chlorinated solvent constituents, was observed at depths ranging from approximately 13 to 40 feet (4.0 to 12.2 m) bgs. Fluorescence responses from compounds confirmed to be commingled with chlorinated solvents indicates that the SCAPS fluorophore detection system is capable of indirectly delineating vadose zone and subaqueous chlorinated solvents and other dense nonaqueous phase liquids (DNAPLs) at contaminant release sites. This confirmation effort represents the first documented account of the successful. application of LIF to identify a mixed DNAPL/LNAPL source zone.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available