4.7 Article

BMP-2 and BMP-9 promote chondrogenic differentiation of human multipotential mesenchymal cells and overcome the inhibitory effect of IL-1

Journal

JOURNAL OF CELLULAR PHYSIOLOGY
Volume 189, Issue 3, Pages 275-284

Publisher

WILEY
DOI: 10.1002/jcp.10025

Keywords

-

Ask authors/readers for more resources

Bone morphogenetic proteins play important roles in connective tissue morphogenesis. In this study, we used human multipotential mesenchymal cells as a target to analyze the effect of bone morphogenetic proteins on chondrogenesis. We also analyzed the effect of proinflammatory cytokine interleukin-1 on chondrogenic-differentiated cells and the interaction of IL-1 beta with bone morphogenetic proteins. Cells placed in a 3-dimensional matrix of alginate beads and cultured in a serum-free media with bone morphogenetic protein-2 and -9 induced expression of type II collagen (Col2A1) mRNA and increased expression of aggrecan and cartilage oligomeric matrix protein suggesting chondrogenic differentiation of the cells. The transcription factor Sox-9 that regulates both Col2A1 and aggrecan gene expression showed increased expression with BMP treatment. Chondrogenic differentiated cells treated with interleukin-1 decreased Sox-9, Col2A1 and aggrecan gene expression. Removal of interleukin-1 and further addition of bone morphogenetic proteins resulted in returned expression of chondrogenic markers. Chondrogenic differentiated cells cultured in the presence of different concentrations of bone morphogenetic proteins and interleukin-1 showed that bone morphogenetic proteins were able to partially block the suppressive effect of interleukin-1. This study shows that bone morphogenetic proteins play an important role in chondrogenesis and may prove to be potential therapeutics in cartilage repair. (C) 2001 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available