4.7 Article

Adaptive visual servoing scheme free of image velocity measurement for uncertain robot manipulators

Journal

AUTOMATICA
Volume 49, Issue 5, Pages 1304-1309

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.automatica.2013.01.047

Keywords

Adaptive control; Cascade control; Lyapunov stability; Robot vision; Robotic manipulators

Funding

  1. CNPq
  2. FAPERJ, Brazil

Ask authors/readers for more resources

This work addresses the visual tracking problem of robot manipulators with non-negligible dynamics using a fixed camera, when the camera-robot system parameters are uncertain. An adaptive strategy is developed for visual servoing systems based on the image-based look-and-move structure to allow the tracking of a 20 reference trajectory, without using image velocity measurements. The adaptive visual servoing problem free of image velocity information is formulated as a relative degree two MIMO adaptive control problem. As a solution, we employ a recently proposed Lyapunov/passivity-based adaptive control scheme based on the SDU factorization method. From a cascade control strategy, the resulting online camera calibration scheme is combined with a direct adaptive motion controller for the robot manipulator, which takes into account its uncertain nonlinear dynamics. The overall stability of the adaptive visual servoing system can be proved thanks to the explicit Lyapunov-like functions of both adaptation schemes. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available