4.5 Article Proceedings Paper

The NPY/AgRP neuron and energy homeostasis

Journal

INTERNATIONAL JOURNAL OF OBESITY
Volume 25, Issue -, Pages S56-S62

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.ijo.0801915

Keywords

energy homeostasis; adiposity

Funding

  1. NIDDK NIH HHS [DK 12829, DK 52989] Funding Source: Medline
  2. NINDS NIH HHS [NS 32273] Funding Source: Medline

Ask authors/readers for more resources

Kennedy hypothesized nearly 50y ago that negative feedback regulation of body fat stores involves hormones that circulate in proportion to adiposity and enter the brain, where they exert inhibitory effects on food intake and energy balance. Recent studies implicate leptin and insulin as 'adiposity signals' to the brain that promote negative energy balance in two ways: by inhibiting 'anabolic' hypothalamic neuronal circuits that stimulate food intake and promote weight gain, and by activating 'catabolic' pathways that reduce food intake and body weight. Chief among candidate 'anabolic' effector pathways is the NPY/AgRP neuron, found only in the hypothalamic arcuate nucleus. These neurons make peptides that potently stimulate food intake not only by increasing neuropeptide Y (NPY) signaling, but by reducing melanocortin signaling via the release of agouti-related peptide (AgRP), an endogenous melanocortin 3/4 receptor antagonist. Since NPY/AgRP neurons express receptors for leptin and insulin and are inhibited by these hormones, they are activated by a decrease of leptin or insulin signaling. Fasting, uncontrolled diabetes and genetic leptin deficiency are examples of conditions in which food intake increases via a mechanism hypothesized to involve NPY/AgRP neurons. Data are reviewed which illustrate the role of these neurons in adaptive and maladaptive states characterized by hyperphagia and weight gain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available