4.4 Article

A novel tandem quadrupole mass spectrometer allowing gaseous collisional activation and surface induced dissociation

Journal

JOURNAL OF MASS SPECTROMETRY
Volume 36, Issue 12, Pages 1260-1268

Publisher

JOHN WILEY & SONS LTD
DOI: 10.1002/jms.217

Keywords

tandem mass spectrometry; peptides; surface-induced dissociation; collision-induced dissociation; tandem quadrupole

Ask authors/readers for more resources

A novel tandem quadrupole mass spectrometer is described that enables gaseous collision-induced dissociation (CID) and surface-induced dissociation (SID) experiments. The instrument consists of a commercially available triple quadrupole mass spectrometer connected to an SID region and an additional, orthogonal quadrupole mass analyser. The performance of the instrument was evaluated using leucine-enkephalin, allowing a comparison between CID and SID, and with previous reports of other SID instruments. The reproducibility of SID data was assessed by replicate determinations of the collision energy required for 50% dissociation of leucine-enkephalin; excellent precision was observed (standard deviation of 0.6 eV) though, unexpectedly, the reproducibility of the equivalent figure for CID was superior. Several peptides were analysed using SID in conjunction with liquid secondary-ion mass spectrometry or electrospray; a comparison of the fragmentation of singly protonated peptide ions and the further dissociation of y-type fragments was consistent with the equivalence of the latter fragments to protonated peptides. Few product ions attributable to high-energy cleavages of amino acid side-chains were observed. The SID properties were investigated of a series of peptides differing only in the derivatization of a cysteine residue; similar decomposition efficiencies were observed for all except the cysteic acid analogue, which demonstrated significantly more facile fragmentation. Copyright (C) 2001 John Wiley Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available