4.4 Article

Cardioprotective effects of transforming growth factor-β1 during early reoxygenation or reperfusion are mediated by p42/p44 MAPK

Journal

JOURNAL OF CARDIOVASCULAR PHARMACOLOGY
Volume 38, Issue 6, Pages 930-939

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/00005344-200112000-00015

Keywords

apoptosis; infarction; ischemia; reperfusion; transforming growth factor-beta 1

Ask authors/readers for more resources

Apoptosis contributes to myocardial cell death during ischemia and reperfusion, especially during reperfusion. Growth factor survival signaling attenuates apoptosis. We therefore examined the effects of transforming growth factor-beta1 (TGF-beta1) on reperfusion injury and assessed the role of p42/p44 MAPK signaling in TGF-beta1-induced protection. Rat ventricular myocytes were subjected to hypoxia and reoxygenation. TGF-beta1 (0.2 ng/ml) was applied to cells during reoxygenation and the extent of apoptosis was determined by TUNEL and annexin V binding assays. Further studies were conducted in intact rat hearts subjected to regional ischemia and reperfusion. TGF-beta1 (0.2 ng/ml) was perfused during early reperfusion. In cells, incubation with TGF-beta1 (0.2 ng/ml) during reoxygenation attenuated the extent of cell membrane damage (trypan blue uptake) and also reduced the numbers of TUNEL- and annexin V-positive cells. Reduction of apoptosis was abrogated by PD98059 (5 muM), an inhibitor of p42/p44 MAPK activation. TGF-beta1 activated p42/p44 MAPK transiently in normoxic myocytes. When intact hearts received TGF-beta1 (0.2 ng/ml) during early reperfusion. infarct size was reduced from 39.4 +/- 3.1% to 17.3 +/- 3.1% (p < 0.01). This protective action of TGF-1 was abrogated by PD98059. These studies are the first to show that TGF-beta attenuates cardiac myocyte apoptosis during early reperfusion and limits infarct size through p42/p44 MAPK activation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available