3.8 Article

Cyclic AMP-dependent protein kinase a plays a role in the directed migration of human keratinocytes in a DC electric field

Journal

CELL MOTILITY AND THE CYTOSKELETON
Volume 50, Issue 4, Pages 207-217

Publisher

WILEY-LISS
DOI: 10.1002/cm.10009

Keywords

protein kinase A; galvanotaxis; motility; keratinocyte; wound healing

Categories

Funding

  1. NIAMS NIH HHS [AR44518] Funding Source: Medline

Ask authors/readers for more resources

Skin wound healing requires epithelial cell migration for re-epithelialization, wound closure, and re-establishment of normal function. We believe that one of the earliest signals to initiate wound healing is the lateral electric field generated by the wound current. Normal human epidermal keratinocytes migrate towards the negative pole, representing the center of the wound, in direct currents of a physiological strength, 100 mV/mm. Virtually nothing is known about the signal transduction mechanisms used by these cells to sense the endogenous electric field. To elucidate possible protein kinase (PK) involvement in the process, PK inhibitors were utilized. Two important findings have been described. Firstly, addition of 50 nM KT5720, an inhibitor of PKA, resulted in a 53% percent reduction in the directional response of keratinocytes in the electric field, while not significantly affecting general cell motility. The reduction was dose-dependent, there was a gradual decrease in the directional response from 5 to 50 nM. Secondly, addition of 1 muM ML-7, a myosin light chain kinase inhibitor, resulted in an approximate 31% decrease in the distance the cells migrated without affecting directional migration. The PKC inhibitors GF109203X at 4 muM and H-7 at 20 muM and W-7, a CaM kinase inhibitor, did not significantly alter either directed migration or cell migration, although they all resulted in a slight reduction in directional migration. D-erythro-sphingosine at 15 muM, a PKC inhibitor, had virtually no effect on either migration distance or directed migration. These findings demonstrate that divergent kinase signaling pathways regulate general cell motility and sustained directional migration and highlight the complexity of the signal transduction mechanisms involved. The inhibitor studies described in this paper implicate a role for PKA in the regulation of the directional migratory response to applied electric fields, galvanotaxis. Cell Motil. Cytoskeleton 50: 207-217, 2001. (C) 2001 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available