4.3 Article

Cluster structure and the first-order phase transition in dipolar systems - Monte Carlo simulation

Journal

EUROPEAN PHYSICAL JOURNAL E
Volume 6, Issue 5, Pages 399-407

Publisher

SPRINGER
DOI: 10.1007/s10189-001-8053-5

Keywords

-

Ask authors/readers for more resources

The Monte Carlo technique is used to simulate a 3D dipolar hard-sphere system. The spatial and magnetic structure of clusters formed by magnetic dipolar interactions in zero applied field is investigated. It is shown that the many-particle clusters are characterized by a quasi-spherical shape, extremely small magnetic moments, and a fractal dimension close to three. These clusters axe regarded as nuclei of a new concentrated isotropic phase. The numerical simulation of the first-order phase transition has been realized which allows us to find the interface between two coexisting phases. It has been found that the dipole-dipole and steric interactions are sufficient to separate the system into two phases with low and high concentrations of particles. The introduction of any additional attraction potential is not required. The phase diagram of dipolar system in zero applied field has been obtained. The simulation results are in qualitative agreement with the predictions of some analytical models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available