4.2 Article

Arm to leg coordination in humans during walking, creeping and swimming activities

Journal

EXPERIMENTAL BRAIN RESEARCH
Volume 141, Issue 3, Pages 375-379

Publisher

SPRINGER-VERLAG
DOI: 10.1007/s002210100875

Keywords

human; arm to leg coordination; locomotion

Categories

Ask authors/readers for more resources

In walking humans, arm to leg coordination is a well established phenomenon. The origin of this coordination, however, remains a matter for debate. It could derive from the intrinsic organisation of the human CNS, but it could also consist of a movement induced epiphenomenon. In order to establish which of these alternatives applies, we recorded arm and leg movements as well as their muscle activities during walking, creeping on all fours and swimming. The relationship between arm and leg cycle frequency observed under these various conditions was then investigated. We found that during walking, creeping on all fours or swimming, arm and leg movements remain frequency locked with a fixed relationship of 1/1, 2/1, 3/1, 4/1 or 5/1. When movements of the legs are slowed by flippers, the frequency relationship may skip to a different value, but the coordination is preserved. Furthermore, minimising the mechanical interactions between the limbs does not abolish coordination. These findings demonstrate that the arm to leg coordination observed in the walking human is also present during other human locomotor activities. The characteristics of this coordination correspond to those of a system of two coupled oscillators like that underlying quadruped locomotion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available