3.8 Article

Supermolecular organization of photosystem II and its associated light-harvesting antenna in Arabidopsis thaliana

Journal

EUROPEAN JOURNAL OF BIOCHEMISTRY
Volume 268, Issue 23, Pages 6020-6028

Publisher

WILEY
DOI: 10.1046/j.0014-2956.2001.02505.x

Keywords

photosystem II; Arabidopsis thaliana; electron microscopy; supercomplex; light-harvesting

Ask authors/readers for more resources

The organization of Arabidopsis thaliana photosystem II (PSII) and its associated light-harvesting antenna (LHCII) was studied in isolated PSII-LHCII supercomplexes and native membrane-bound crystals by transmission electron microscopy and image analysis. Over 4000 single-particle projections of PSII-LHCII supercomplexes were analyzed. In comparison to spinach supercomplexes [Boekema, E.J., van Roon, H., van Breemen, J.F.L. & Dekker, J.P (1999) Eur. J Biochem. 266, 444-452] some striking differences were revealed: a much larger number of supercomplexes from Arabidopsis contain copies of M-type LHCII trimers. M-type trimers can also bind in the absence of the more common S-type trimers. No binding of L-type trimers could be detected. Analysis of native membrane-bound PSII crystals revealed a novel type of crystal with a unit cell of 25.6 x 21.4 nn (angle 77 degrees), which is larger than any of the PSII lattices observed before. The data show that the unit cell is built up from C2S2M2 supercomplexes, rather than from C2S2M supercomplexes observed in native membrane crystals from spinach [Boekema, E.J., Van Breemen, J.F.L., Van Roon, H. & Dekker, J.P. (2000) J. Mol. Biol 301, 1123-1133]. It is concluded from both the single particle analysis and the crystal analysis that the M-type trimers bind more strongly to PSII core complexes in Arabidopsis than in spinach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available