4.7 Article Proceedings Paper

Serotonergic regulation of inhibitory avoidance and one-way escape in the rat elevated T-maze

Journal

NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS
Volume 25, Issue 7-8, Pages 637-645

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0149-7634(01)00047-1

Keywords

serotonin; periaqueductal gray matter; anxiety; panic; dorsal raphe nucleus; median raphe nucleus; amygdala

Ask authors/readers for more resources

It has been proposed that distinct 5-HT pathways modulate different types of anxiety. Activation of the ascending dorsal raphe (DR)-5-HT pathway, innervating the amygdala and frontal cortex, would facilitate learned defensive behaviors. On the other hand, activation of the DR-periventricular 5-HT pathway, which innervates the dorsal periaqueductal gray matter (DPAG), would inhibit innate flight or fight reactions. Dysfunction of these pathways has been suggested to relate to generalized anxiety disorder (GAD) and panic disorder (PD) in humans, respectively. The elevated T-maze has been developed to separate conditioned (inhibitory avoidance) from unconditioned (escape) defensive responses in the same rat. Pharmacological validation of this model has shown that the GAD-effective serotonergic anxiolytic buspirone or the putative anxiolytic ritanserin selectively impaired inhibitory avoidance while leaving one-way escape unchanged. Chronic injection of the 5-HT/noradrenaline reuptake inhibitor imipramine impaired inhibitory avoidance and prolonged escape, an effect that may be related to the therapeutic action of this drug on both GAD and PD. Like imipramine, intra-DPAG injection of the 5-HT(1A) agonist 8-OH-DPAT impaired both inhibitory avoidance and one-way escape. Intra-DPAG administration of the 5-HT(2A/2C) agonist DOI prolonged escape, without affecting inhibitory avoidance. The reversible inactivation of the DRN by muscimol impaired inhibitory avoidance, while facilitating escape from the open arm. Taken together, these results suggest that 5-HT exerts differential control on inhibitory avoidance and escape response in the elevated T-maze, mobilizing different types of 5-HT receptors in key structures implicated in fear/anxiety. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available