4.6 Article

Diabetes-related changes in cAMP response element-binding protein content enhance smooth muscle cell proliferation and migration

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 276, Issue 49, Pages 46142-46150

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M104770200

Keywords

-

Funding

  1. NIDDK NIH HHS [K08 DK02351, R01 DK53969] Funding Source: Medline

Ask authors/readers for more resources

We hypothesized that diabetes and glucose-induced reactive oxygen species lead to depletion of cAMP response element-binding protein (CREB) content in the vasculature. In primary cultures of smooth muscle cells (SMC) high medium glucose decreased CREB function but increased SMC chemokinesis and entry into the cell cycle. These effects were blocked by pretreatment with the antioxidants. High glucose increased intracellular reactive oxygen species detected by CM-H(2)DCFA. SMC exposed to oxidative stress (H2O2) demonstrated a 3.5-fold increase in chemokinesis (p < 0.05) and accelerated entry into cell cycle, accompanied by a significant decrease in CREB content. Chronic oxidative challenge similar to the microenvironment in diabetes (glucose oxidase treatment) decreases CREB content (40-50%). Adenoviral-mediated expression of constitutively active CREB abolished the increase in chemokinesis and cell cycle progression induced by either high glucose or oxidative stress. Analysis of vessels from insulin resistant or diabetic animals indicates that CREB content is decreased in the vascular stroma. Treatment of insulin-resistant animals with the insulin sensitizer rosiglitazone restores vessel wall CREB content toward that observed in normal animals. In summary, high glucose and oxidative stress decrease SMC CREB content increase chemokinesis and entry into the cell cycle, which is blocked by antioxidants or restoration of CREB content. Thus, decreased vascular CREB content could be one of the molecular mechanisms leading to increased atherosclerosis in diabetes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available