4.6 Article

The Phe-X-Glu DNA binding motif of MutS -: The role of hydrogen bonding in mismatch recognition

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 276, Issue 49, Pages 45505-45508

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.C100449200

Keywords

-

Funding

  1. NIGMS NIH HHS [R01 GM52956] Funding Source: Medline

Ask authors/readers for more resources

The crystal structures of MutS protein from Thermus aquaticus and Escherichia coli in a complex with a mismatch-containing DNA duplex reveal that the Glu residue in a conserved Phe-X-Glu motif participates in a hydrogen-bonded contact with either an unpaired thymidine or the thymidine of a G-T base-base mismatch. Here, the role of hydrogen bonding in mismatch recognition by MutS is assessed. The relative affinities of MutS for DNA duplexes containing nonpolar shape mimics of A and T, 4-methylbenzimidazole (Z), and difluoro-toluene (F), respectively, that lack hydrogen bonding donors and acceptors, are determined in gel mobility shift assays. The results provide support for an induced fit mode of mismatch binding in which duplexes destabilized by mismatches are preferred substrates for kinking by MutS. Hydrogen bonding between the O is an element of2 group of Glu and the mismatched base contributes only marginally to mismatch recognition and is significantly less important than the aromatic ring stack with the conserved Phe residue. A MutS protein in which Ala is substituted for Glu(38) is shown to be defective for mismatch repair in vivo. DNA binding studies reveal a novel role for the conserved Glu residue in the establishment of mismatch discrimination by MutS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available