4.7 Article

Gamma-ray burst phenomenology, shock dynamo, and the first magnetic fields

Journal

ASTROPHYSICAL JOURNAL
Volume 563, Issue 1, Pages L15-L18

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/324223

Keywords

magnetic fields; shock waves

Ask authors/readers for more resources

A relativistic collisionless shock propagating into an unmagnetized medium leaves behind a strong large-scale magnetic field. This seems to follow from two assumptions: (1) Gamma-ray burst (GRB) afterglows are explained by synchrotron emission of a relativistic shock. (2) The magnetic field cannot exist on microscopic scales only; it would decay by phase-space mixing. Assumption 1 is generally accepted because of an apparent success of the shock synchrotron phenomenological model of GRB afterglows. Assumption 2 is confirmed in this work by a low-dimensional numerical simulation. One may hypothesize that relativistic shock velocities are not essential for the magnetic field generation and that all collisionless shocks propagating into an unmagnetized medium generate strong large-scale magnetic fields. If this hypothesis is true, the first cosmical magnetic fields could have been generated in shocks of the first virialized objects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available