4.6 Article

Photodynamic therapy-induced apoptosis in epidermoid carcinoma cells - Reactive oxygen species and mitochondrial inner membrane permeabilization

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 276, Issue 50, Pages 47379-47386

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M107678200

Keywords

-

Funding

  1. NCI NIH HHS [T32 CA 59366] Funding Source: Medline

Ask authors/readers for more resources

Photodynamic therapy (PDT), a novel and promising cancer treatment that employs a combination of a photosensitizing chemical and visible light, induces apoptosis in human epidermoid carcinoma A431 cells. However, the precise mechanism of PDT-induced apoptosis is not well characterized. To dissect the pathways of PDT-induced apoptosis, we investigated the involvement of mitochondrial damage by examining a second generation photosensitizer, the silicon phthalocyanine 4 (Pc 4). By using laser-scanning confocal microscopy, we found that Pc 4 localized to cytosolic membranes primarily, but not exclusively, in mitochondria. Formation of mitochondrial reactive oxygen species (ROS) was detected within minutes when cells were exposed to Pc 4 and 670-675 nm light. This was followed by mitochondrial inner membrane permeabilization, depolarization and swelling, cytochrome c release, and apoptotic death. Desferrioxamine prevented mitochondrial ROS production and the events thereafter. Cyclosporin A plus trifluoperazine, blockers of the mitochondrial permeability transition, inhibited mitochondrial inner membrane permeabilization and depolarization without affecting mitochondrial ROS generation. These data indicate that the mitochondrial ROS are critical in initiating mitochondrial inner membrane permeabilization, which leads to mitochondrial swelling, cytochrome c release to the cytosol, and apoptotic death during PDT with Pc 4.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available