4.7 Article

Bubbles, feedback and the intracluster medium: three-dimensional hydrodynamic simulations

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 328, Issue 4, Pages 1091-1097

Publisher

OXFORD UNIV PRESS
DOI: 10.1046/j.1365-8711.2001.04927.x

Keywords

methods : numerical; galaxies : clusters : general; cooling flows; galaxies : formation; intergalactic medium; X-rays : galaxies : clusters

Ask authors/readers for more resources

We use a three-dimensional hydrodynamical code to simulate the effect of energy injection on cooling flows in the intracluster medium. Specifically, we compare a simulation of a 10(15)-M-circle dot cluster with radiative cooling only with a second simulation in which thermal energy is injected 31 kpc off-centre, over 64 kpc(3) at a rate of 4.9 x 10(44) erg s(-1) for 50 Myr. The heat injection forms a hot, low-density bubble which quickly rises, dragging behind it material from the cluster core. The rising bubble pushes with it a shell of gas which expands and cools. We find the appearance of the bubble in X-ray temperature and luminosity to be in good qualitative agreement with recent Chandra observations of cluster cores. Toward the end of the simulation, at 600 Myr, the displaced gas begins to fall back toward the core, and the subsequent turbulence is very efficient at mixing the low- and high-entropy gas. The result is that the cooling flow is disrupted for up to similar to 50 Myr after the injection of energy ceases. Thus this mechanism provides a very efficient method for regulating cooling flows, if the injection events occur with a 1:1 duty cycle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available