4.7 Article

Timing of squid migration reflects North Atlantic climate variability

Journal

PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES
Volume 268, Issue 1485, Pages 2607-2611

Publisher

ROYAL SOC
DOI: 10.1098/rspb.2001.1847

Keywords

phenology; sea temperature; North Atlantic oscillation; loliginid squid

Ask authors/readers for more resources

The environmental and biotic conditions affecting fisheries for cephalopods are only partially understood. A problem central to this is how climate change may influence population movements by altering the availability of thermal resources. In this study we investigate the links between climate and sea-temperature changes and squid arrival time off southwestern England over a 20-year period. We show that veined squid (Loligo forbesi) migrate eastwards in the English Channel earlier when water in the preceding months is warmer, and that higher temperatures and early arrival correspond with warm (positive) phases of the North Atlantic oscillation (NAO). The timing of squid peak abundance advanced by 120150 days in the warmest years ('early' years) compared with the coldest ('late' years). Furthermore, sea-bottom temperature was closely linked to the extent of squid movement. Temperature increases over the five months prior to and during the month of peak squid abundance did not differ between early and late years, indicating squid responded to temperature changes independently of time of year. We conclude that the temporal variation in peak abundance of squid seen off Plymouth represents temperature-dependent movement, which is in turn mediated by climatic changes associated with the NAO. Such climate-mediated movement may be a widespread characteristic of cephalopod populations worldwide, and may have implications for future fisheries management because global warming may alter both the timing and location of peak population abundance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available