4.6 Article

Tenascin-C aptamers are generated using tumor cells and purified protein

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 276, Issue 52, Pages 48644-48654

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M104651200

Keywords

-

Ask authors/readers for more resources

Tenascin-C (TN-C) is an extracellular matrix protein that is overexpressed during tissue remodeling processes, including tumor growth. To identify an aptamer for testing as a tumor-selective ligand, SELEX (systematic evolution of ligands by exponential enrichment) procedures were performed using both TN-C and TN-C-expressing U251 glioblastoma cells. The different selection techniques yielded TN-C aptamers that are related in sequence. In addition, a crossover procedure that switched from tumor cell to purified protein selections was effective in isolating two high-affinity TN-C aptamers. When targeting tumor cells in vitro, the observed propensity of naive oligonucleotide pools to evolve TN-C aptamers may be due to the abundance of this protein. In vivo, TN-C abundance may also be well suited for aptamer accumulation in the tumor milieu. A size-minimized and nuclease-stabilized aptamer, TTA1, binds to the fibrinogen-like domain of TN-C with an equilibrium dissociation constant (K-d) of 5 x 10(-9) M. At 13 kDa, this aptamer is intermediate in size between peptides and single chain antibody fragments, both of which are superior to antibodies for tumor targeting because of their smaller size. TTA1 defines a new class of ligands that are intended for targeted delivery of radioisotopes or chemical agents to diseased tissues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available