4.7 Article

Studies on the effect of ball milling on lignin structure using a modified DFRC method

Journal

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Volume 50, Issue 1, Pages 129-135

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jf010870f

Keywords

aryl other bonds; milled wood lignin (MWL); cellulolytic enzyme lignin (CEL); ball milling; native lignin; structure

Ask authors/readers for more resources

The structures of milled wood lignin (MWL), cellulolytic enzyme lignin (CEL), and residual lignin (REL) from a loblolly pine were analyzed using a modified derivatization followed by reductive cleavage (DFRC) method developed to allow the quantitative determination of three different structural monomeric products originating in lignin: phenolic beta-O-4, alpha-O-4, and etherified beta-O-4 structures. Results show that MWL and CEL are structurally identical, with an increased phenolic beta-O-4 content compared to that of the original Wiley milled wood. These results indicate that the portion of lignin linked to carbohydrates and that not linked to carbohydrates are structurally the same. Modified DFRC analysis of the effect of ball milling on the structure of lignin in wood, MWL, CEL, and REL indicate that vibratory ball milling does not change the lignin structure provided certain precautions are taken. Specifically, dry vibratory ball milling under a nitrogen atmosphere causes substantial structural changes including condensation, whereas vibratory ball milling in toluene had little effect on the lignin structure. This indicates that the structural differences observed in MWL and CEL arise because of the extraction procedure, which preferentially extracts phenolic lignin structures. MWL and CEL are representative of the total lignin in wood, however, due primarily to the solvent extraction process, higher phenolic hydroxyl contents are observed. Nitrobenzene oxidation showed structural results similar to those from the modified DFRC method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available