4.6 Article

Diacylglycerol (DAG)-lactones, a new class of protein kinase C (PKC) agonists, induce apoptosis in LNCaP prostate cancer cells by selective activation of PKCα

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 1, Pages 645-655

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M107639200

Keywords

-

Funding

  1. NCI NIH HHS [R01 CA89202-01A1] Funding Source: Medline

Ask authors/readers for more resources

Phorbol esters, the archetypical (PKC) activators, induce apoptosis in androgen-sensitive LNCaP prostate cancer cells. In this study we evaluate the effect of a novel class of PKC ligands, the diacylglycerol (DAG)-lactones, as inducers of apoptosis in LNCaP cells. These unique ligands were designed using novel pharmacophore- and receptor-guided approaches to achieve highly potent DAG surrogates. Two of these compounds, HK434 and HK654, induced apoptosis in LNCaP cells with much higher potency than oleoyl-acetyl-glycerol or phorbol 12,13-dibutyrate. Moreover, different PKC isozymes were found to mediate the apoptotic effect of phorbol 12-myristate 13-acetate (PMA) and HK654 in LNCaP cells. Using PKC inhibitors and dominant negative PKC isoforms, we found that both PKCalpha and PKCdelta mediated the apoptotic effect of PMA, whereas only PKCalpha was involved in the effect of the DAG-lactone. The PKCalpha selectivity of HK654 in LNCaP cells contrasts with similar potencies in vitro for binding and activation of PKCalpha and PKCdelta. Consistent with the differences in isoform dependence in intact cells, PMA and HK654 show marked differences in their abilities to translocate PKC isozymes. Both PMA and HK654 induce a marked redistribution of PKCalpha to the plasma membrane. On the other hand, unlike PMA, HK654 translocates PKCdelta predominantly to the nuclear membrane. Thus, DAG-lactones have a unique profile of activation of PKC isozymes for inducing apoptosis in LNCaP cells and represent the first example of a selective activator of a classical PKC in cellular models. An attractive hypothesis is that selective activation of PKC isozymes by pharmacological agents in cells can be achieved by differential intracellular targeting of each PKC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available