4.7 Article

Limited-view iridescence in the butterfly Ancyluris meliboeus

Journal

Publisher

ROYAL SOC
DOI: 10.1098/rspb.2001.1836

Keywords

structural colour; interference; multilayer; diffraction; butterfly

Funding

  1. Biotechnology and Biological Sciences Research Council [JF16983] Funding Source: Medline
  2. Biotechnology and Biological Sciences Research Council [JF16983] Funding Source: researchfish

Ask authors/readers for more resources

Few mechanisms exist in nature that effect colour reflectivity, simultaneously high in spectral purity and in intensity, over a strictly limited portion of solid angle above a surface. Fewer still bring about such colour reflectivity with an angle dependence that is distinct from the colour transition associated with conventional multilayer interference. We have discovered that the ventral wings of the butterfly Ancyluris meliboeus exhibit these optical effects, and that they result from remarkable nano-scale architecture on the wing scales of the butterfly. This nano-structure is in the form of high-tilt multilayering that, as a result of abrupt termination of the multilayers, brings about diffraction concurrently with interference. The product is bright structural colour in a limited angular region over the ventral wing surface that enables remarkably strong flicker and colour contrast through minimal wing movement. The visibility effects associated with its colour, in terms of bright and dark zones of the observation hemisphere over the wing surface, are described. We suggest the purpose of the high-contrast ventral wing visibility associated with A. meliboeus is at-rest signalling; this is distinct from the dorsal wing visibility of other species such as those of the genus Morpho, the function of which is largely for in-flight signalling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available