4.8 Article

Reducing constraints on quantum computer design by encoded selective recoupling

Journal

PHYSICAL REVIEW LETTERS
Volume 88, Issue 1, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.88.017905

Keywords

-

Ask authors/readers for more resources

The requirement of performing both single-qubit and two-qubit operations in the implementation of universal quantum logic often leads to very demanding constraints on quantum computer design. We show here how to eliminate the need for single-qubit operations in a large subset of quantum computer proposals: those governed by isotropic and XXZ, XY-type anisotropic exchange interactions. Our method employs an encoding of one logical qubit into two physical qubits, while logic operations are performed using an analogue of the NMR selective recoupling method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available