4.7 Article

A novel main-chain anion-binding site in proteins:: The nest.: A particular combination of φ,ψ values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 315, Issue 2, Pages 171-182

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1006/jmbi.2001.5227

Keywords

hydrogen bonds; anion-binding; serine proteases; P loop; EF hand

Ask authors/readers for more resources

Main-chain conformations where one amino acid residue can be described as gamma(R) (or alpha(R)) and an adjacent one as gamma(L) (or alpha(L)) mostly result in the three main-chain NH groups (of the two residues and the one following) forming a depression that can accommodate an atom with a whole or partial negative charge. We propose the name nest for this feature. The negatively charged atom, when present, is also stabilized by hydrogen-bonding with the NH groups. In an average protein, 8% of residues are involved in a nest. The anion, or partially negatively charged atom, that often occupies the nest may be a main-chain carbonyl oxygen atom as in the paperclip, also called the Schellman loop, and the oxyanion hole of serine proteases. It can be a phosphate group, as in the P-loop superfamily that binds ATP and GTP. Overlapping, compound, nests are observed often, as in the P-loop, which has five successive NH groups that bind the beta phosphate group of nucleotide triphosphate. The longest compound nests are found surrounding cysteine-bound [2Fe2S] and [4Fe4S] iron-sulfur centers, which are also anionic; nests may encourage binding of the more reduced forms. The nest is a novel feature in the sense of not having been described as a unique motif with anion-binding potential before, although some of the situations where it occurs are familiar. (C) 2002 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available