4.5 Article

High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer's disease brain

Journal

HUMAN MOLECULAR GENETICS
Volume 11, Issue 2, Pages 133-145

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/11.2.133

Keywords

-

Funding

  1. NIA NIH HHS [K08 AG00798] Funding Source: Medline
  2. NINDS NIH HHS [K08 NS01971] Funding Source: Medline

Ask authors/readers for more resources

The mitochondrial theory of aging proposes that mitochondrial DNA (mtDNA) accumulates mutations with age, and that these mutations contribute to physiological decline in aging and degenerative diseases. Although a great deal of indirect evidence supports this hypothesis, the aggregate burden of mtDNA mutations, particularly point mutations, has not been systematically quantified in aging or neurodegenerative disorders. Therefore, we directly assessed the aggregate burden of brain mtDNA point mutations in 17 subjects with Alzheimer's disease (AD), 10 elderly control subjects and 14 younger control subjects, using a PCR-cloning-sequencing strategy. We found that brain mtDNA from elderly subjects had a higher aggregate burden of mutations than brain mtDNA from younger subjects. The average aggregate mutational burden in elderly subjects was 2 x 10(-4) mutations/bp. The bulk of these mutations were individually rare point mutations, 60% of which changed an amino acid. Control experiments ensure that these results were not due to artifacts arising from PCR error, mistaken identification of nuclear pseudogenes or ex vivo oxidation. Cytochrome oxidase activity correlated negatively with increasing mutational burden. These findings significantly bolster the mitochondrial theory of aging.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available