4.6 Article

The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins

Journal

JOURNAL OF IMMUNOLOGY
Volume 168, Issue 2, Pages 569-576

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.168.2.569

Keywords

-

Categories

Ask authors/readers for more resources

Previous studies have shown that human heat shock protein (hsp) 60 elicits a strong proinflammatory response in cells of the innate immune system with CD14, Toll-like receptor (TLR) 2, and TLR4 as mediators of signaling, but probably not of binding. In the present study, we directly demonstrate binding of hsp60 to the macrophage surface and find the binding receptor for hsp60 different from the previously described common receptor for several other heat shock proteins, including hsp70, hsp90, and gp96. Fluorescence-labeled human hsp60 bound to cell surfaces of the murine macrophage lines J774 A.1 and RAW264.7 and to mouse bone marrow-derived macrophages. By flow cytometry, we could demonstrate for the first time that hsp60 binding to macrophages occurred at submicromolar concentrations, is saturable, and can be competed by unlabeled hsp60, but not by unrelated proteins, thus confirming the classic characteristics of specific ligand-receptor interactions. Binding of hsp60 at 4degreesC was followed by endocytosis at 37degreesC. Hsp60 binding to macrophages could not be competed by excess hsp70, hsp90, or gp96, all of which share the alpha(2)-macroglobulin receptor as binding site. Hsp60 binding occurred in the absence of surface TLR4. However, no cytokine response was induced by hsp60 in TLR4-deficient macrophages. We conclude that hsp60 binds to a stereo-specific receptor on macrophages, and that different surface molecules are engaged in binding and signal transduction. Furthermore, the binding site for hsp60 is separate from the common receptor for hsp70, hsp90, and gp96, which suggests an independent role of hsp60 as danger Ag and in immunoregulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available