4.7 Article

Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents

Journal

JOURNAL OF NEUROSCIENCE
Volume 22, Issue 2, Pages 437-445

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.22-02-00437.2002

Keywords

adult neural stem cells; multipotent precursors; forebrain subventricular region; rostral extension; olfactory bulb; neurogenesis

Categories

Funding

  1. Telethon [E.1246] Funding Source: Medline

Ask authors/readers for more resources

The lateral walls of the forebrain lateral ventricles are the richest source of stem cells in the adult mammalian brain. These stem cells give rise to new olfactory neurons that are renewed throughout life. The neurons originate in the subventricular zone (SVZ), migrate within the rostral extension (RE) of the SVZ along the rostral migratory stream (RMS) within tube-like structures formed of glial cells, to eventually reach the olfactory bulb (OB). We demonstrate that, contrary to the current view, multipotential (neuronal-astroglial-oligodendroglial) precursors with stem cell features can be isolated not only from the SVZ but also from the entire RE, including the distal portion within the OB. Specifically, these stem cells do not derive from the migratory neuroblasts coming from the SVZ. Interestingly, stem cells isolated from the proximal RE generate significantly more oligodendrocytes, and those from the distal RE proliferate significantly more slowly than stem cells derived from the SVZ and other RE regions. These findings demonstrate that stem cells are not confined to the forebrain periventricular region and indicate that stem cells endowed with different functional characteristics occur at different levels of the SVZ-RE pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available