4.7 Article

Structure-activity profiles of complex biantennary glycans with core fucosylation and with/without additional α2,3/α2,6 sialylation:: Synthesis of neoglycoproteins and their properties in lectin assays, cell binding, and organ uptake

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 45, Issue 2, Pages 478-491

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jm0110237

Keywords

-

Ask authors/readers for more resources

The consideration of oligosaccharides and glycoconjugates as biopharmaceuticals is an emerging topic in drug design. Chemoenzymatic synthesis of N-glycans was performed to examine the influence of N-glycan core fucosylation on lectin-binding properties and biodistribution. As a first step in a systematic comparison of N-glycans, the core fucose moiety was chemically introduced into a complex-type biantennary heptasaccharide azide. After deprotection and attachment of a spacer, the terminal sections of the N-glycan were elongated enzymatically. Conversion of the amino group in the spacer to an isothiocyanate gave derivatives allowing convenient ligand attachment to bovine serum albumin (BSA). The resulting neoglycoproteins contained an average of 2.9-4.6 chains per carrier molecule. Relative to unsubstituted biantennary complex-type N-glycans, the core fucosylation appears to favor the extended orientation of the alpha1,6-arm. This was deduced from an up to 5-fold alteration of affinity for lectins in solid-phase assays. Marked differences were also found for cell surface binding of cultured tumor cells, for staining of tumor cells in lung sections, and in organ distribution. In vivo, the alpha2,6-sialylated neoglycoproteins showed a reduced serum half-life in mice relative to the alpha2,3-sialylated isomer and the non-fucosylated congeners. These results support the notion that changing the shape of a glycan provides a promising strategy to optimize the affinity of protein-carbohydrate interactions. Overall, our study underscores the importance of chemoenzymatic synthesis to define the effect of chain orientation on the ligand properties of N-glycans.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available