4.7 Article

The checkpoint protein Chfr is a ligase that ubiquitinates Plk1 and inhibits Cdc2 at the G2 to M transition

Journal

JOURNAL OF CELL BIOLOGY
Volume 156, Issue 2, Pages 249-259

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.200108016

Keywords

Chfr; Cdc2; Plk1; mitosis; ubiquitin protein ligase

Categories

Funding

  1. Wellcome Trust Funding Source: Medline

Ask authors/readers for more resources

The checkpoint protein Chfr delays entry into mitosis, in the presence of mitotic stress (Scolnick, D.M., and T.D. Halazonetis. 2000. Nature. 406:430-435). We show here that Chfr is a ubiquitin ligase, both in vitro and in vivo. When transfected into HEK293T cells, Myc-Chfr promotes the formation of high molecular weight ubiquitin conjugates. The ring finger domain in Chfr is required for the ligase activity; this domain auto-ubiquitinates, and mutations of conserved residues in this domain abolish the ligase activity. Using Xenopus cell-free extracts, we demonstrated that Chfr delays the entry into mitosis by negatively regulating the activation of the Cdc2 kinase at the G2-M transition. Specifically, the Chfr pathway prolongs the phosphorylated state of tyrosine 15 in Cdc2. The Chfr-mediated cell cycle delay requires ubiquitin-dependent protein degradation, because inactivating mutations in Chfr, interference with poly-ubiquitination, and inhibition of proteasomes all abolish this delay in mitotic entry. The direct target of the Chfr pathway is Polo-like kinase I (Plk1). Ubiquitination of Plk1 by Chfr delays the activation of the Cdc25C phosphatase and the inactivation of the Wee1 kinase, leading to a delay in Cdc2 activation. Thus, the Chfr pathway represents a novel checkpoint pathway that regulates the entry into mitosis by ubiquitin-dependent proteolysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available