4.8 Review

Alternative lengthening of telomeres in mammalian cells

Journal

ONCOGENE
Volume 21, Issue 4, Pages 598-610

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1205058

Keywords

telomere; alternative lengthening of telomeres; ALT-associated PML bodies; recombination.; immortalization; cancer

Ask authors/readers for more resources

Some immortalized mammalian cell lines and tumors maintain or increase the overall length of their telomeres in the absence of telomerase activity by one or more mechanisms referred to as alternative lengthening of telomeres (ALT). Characteristics of human ALT cells include great heterogeneity of telomere size (ranging from undetectable to abnormally long) within individual cells, and ALT-associated PML bodies (APBs) that contain extrachromosomal telomeric DNA, telomere-specific binding proteins, and proteins involved in DNA recombination and replication. Activation of ALT during immortalization involves recessive mutations in genes that are as yet unidentified. Repressors of ALT activity are present in normal cells and some telomerase-positive cells. Telomere length dynamics in ALT cells suggest a recombinational mechanism. Inter-telomeric copying occurs, consistent with a mechanism in which single-stranded DNA at one telomere terminus invades another telomere and uses it as a copy template resulting in net increase in telomeric sequence. It is possible that t-loops, linear and/or circular extrachromosomal telomeric DNA, and the proteins found in APBs, may be involved in the mechanism. ALT and telomerase activity can co-exist within cultured cells, and within tumors. The existence of ALT adds some complexity to proposed uses of telomere-related parameters in cancer diagnosis and prognosis, and poses challenges for the design of anticancer therapeutics designed to inhibit telomere maintenance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available