4.7 Article

Determining the differences in actin binding by human ADF and cofilin

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 315, Issue 4, Pages 911-925

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1006/jmbi.2001.5280

Keywords

actin-depolymerizing factor; cofilin; actin dynamics

Ask authors/readers for more resources

The actin-depolymerizing factor (ADF)/cofilin family of proteins play an essential role in actin dynamics and cytoskeletal re-organization. Human tissues express two isoforms in the same cells, ADF and cofilin, and these two proteins are more than 70 % identical in amino acid sequence. We show that ADF is a much more potent actin-depolymerizing agent than cofilin: the maximum level of depolymerization at pH 8 by ADF is about 20 muM compared to 5 muM for cofilin, but little depolymerization occurs at pH 6.5 with either protein. However, we find little difference between the two proteins in their binding to filaments, their severing activities or their activation of subunit release from the pointed ends of filaments. Likewise, they show no significant differences in their affinities for monomeric actin: both bind 15-fold more tightly to actin.ADP than to actin.ATP. Complexes between actin.ADP and ADF or cofilin associate with both barbed and pointed ends of filaments at similar rates (close to those of actin.ATP and much higher than those of actin.ADP). This explains why high concentrations of both proteins reverse the activation of subunit release at pointed ends. The major difference between the two proteins is that the nucleating activity of cofilin-actin.ADP complexes is twice that of ADF-actin.ADP complexes and this, in turn, is twice that of actin.ATP alone. It is this weaker nucleating potential of ADF-actin.ADP that accounts for the much higher steady-state depolymerizing activity. The pH-sensitivity is due to the nucleating activity of complexes being greater at pH 6.5 than at pH 8. Sequence analysis of mammalian and avian isoforms shows a consistent pattern of charge differences in regions of the protein associated with F-actin-binding that may account for the differences in activity between ADF and cofilin. (C) 2002 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available