4.6 Article

Covalent DNA immobilization on polymer-shielded silver-coated quartz crystal microbalance using photobiotin-based UV irradiation

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/bbrc.2001.6297

Keywords

quartz crystal microbalance; polystyrene; DNA sensor; photochemistry; UV irradiation; photobiotin

Ask authors/readers for more resources

The use of a commercial, silver-coated quartz crystal microbalance (QCM) as a disposable, low-cost, and reliable DNA sensor is presented. This is an incorporation of polymer-based silver electrode shielding and photochemistry-based surface modification for covalent DNA immobilization. To prevent undesired oxidation, the silver electrodes are coated with thin polystyrene films. The polymer surfaces are then modified by a photoreactive biotin derivative (photobiotin) under UV irradiation. The resulting biotin residues on the polymer-shielded surface react with a tetrameric avidin. Consequently a biotin-labeled DNA probe can be immobilized through a biotin-avidin-biotin bridge. A 14-mer single-stranded biotin-DNA probe and a 70-mer single-stranded DNA fragment containing complementary or noncomplementary sequences are used as a model system for DNA hybridization assay on the proposed sensors. The shielding ability of the polystyrene coatings after photo irradiation is investigated. The DNA probe binding capacity, hybridization efficiency, and kinetics are also investigated. (C) 2002 Elsevier Science (USA).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available