4.8 Article

Topologically protected quantum bits using Josephson junction arrays

Journal

NATURE
Volume 415, Issue 6871, Pages 503-506

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/415503a

Keywords

-

Ask authors/readers for more resources

All physical implementations of quantum bits (or qubits, the logical elements in a putative quantum computer) must overcome conflicting requirements: the qubits should be manipulable through external signals, while remaining isolated from their environment. Proposals based on quantum optics emphasize optimal isolation(1-3), while those following the solid-state route exploit the variability and scalability of nanoscale fabrication techniques(4-8). Recently, various designs using superconducting structures have been successfully tested for quantum coherent operation(9-11), however, the ultimate goal of reaching coherent evolution over thousands of elementary operations remains a formidable task. Protecting qubits from decoherence by exploiting topological stability is a qualitatively new proposal(12) that holds promise for long decoherence times, but its physical implementation has remained unclear. Here we show how strongly correlated systems developing an isolated twofold degenerate quantum dimer liquid ground state can be used in the construction of topologically stable qubits; we discuss their implementation using Josephson junction arrays. Although the complexity of their architecture challenges the technology base available today, such topological qubits greatly benefit from their built-in fault-tolerance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available