4.5 Article

Histone-dependent association of Tup1-Ssn6 with repressed genes in vivo

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 22, Issue 3, Pages 693-703

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.22.3.693-703.2002

Keywords

-

Funding

  1. NIGMS NIH HHS [GM51189, R01 GM051189] Funding Source: Medline

Ask authors/readers for more resources

The Tup1-Ssn6 complex regulates diverse classes of genes in Saccharomyces cerevisiae and serves as a model for corepressor functions in many organisms. Tup1-Ssn6 does not directly bind DNA but is brought to target genes through interactions with sequence-specific DNA binding factors. Full repression by Tup1-Ssn6 appears to require interactions with both the histone tails and components of the general transcription machinery, although the relative contribution of these two pathways is not clear. Here, we map Tup1 locations on two classes of Tup1-Ssn6-regulated genes in vivo via chromatin immunoprecipitations. Distinct profiles of Tup1 are observed on a cell-specific genes and DNA damage-inducible genes, suggesting that alternate repressive architectures may be created on different classes of repressed genes. In both cases, decreases in acetylation of histone H3 colocalize with Tup1. Strikingly, although loss of the Srb10 mediator protein had no effect on Tup1 localization, both histone tail mutations and histone deacetylase mutations crippled the association of Tup1 with target loci. Together with previous findings that Tup1-Ssn6 physically associates with histone deacetylase activities, these results indicate that the repressor complex alters histone modification states to facilitate interactions with histones and that these interactions are required to maintain a stable repressive state.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available