4.4 Article

Neutral endopeptidase knockout induces hyperalgesia in a model of visceral pain, an effect related to bradykinin and nitric oxide

Journal

JOURNAL OF MOLECULAR NEUROSCIENCE
Volume 18, Issue 1-2, Pages 129-134

Publisher

HUMANA PRESS INC
DOI: 10.1385/JMN:18:1-2:129

Keywords

nociception; neutral endopeptidase; enkephalins; bradykinin; knockout mice, enkephalinase

Ask authors/readers for more resources

Neutral endopeptidase (EC3.4.24.11, NEP, enkephalinase) is a zinc-metalloendopeptidase, cleaving a variety of substrates like enkephalins, substance P, and bradykinin. In the brain, NEP is a key enzyme in the degradation of enkephalins. Pharmacological inhibition of NEP-activity causes analgesia resulting from enhanced extracellular enkephalin concentrations. Recently, transgenic mice lacking the enzyme NEP have been developed (Lu, 1995). The present study was designed to investigate the nociceptive behavior of these NEP-knockout mice. Interestingly, NEP-deficient mice did not respond with decreased pain perception, but exhibited hyperalgesia in the hot-plate jump, warm-water tail-withdrawal, and most notably in the acetic-acid writhing test. Inhibition of aminopeptidase N by bestatin reduced writhing in both strains, whereas NEP-inhibition by thiorphan reduced writhing selectively in wild-type mice. Naloxone increased writhing in wild-type but not in knockouts, whereas the bradykinin B-2-receptor antagonist HOE140 reduced writhing selectively in NEP-knockouts. Similarly, the nitric oxide synthase inhibitor L-NAME reduced writhing in NEP-knockouts. These results indicate that genetic elimination of NEP, in contrast to pharmacological inhibition, leads to bradykinin-induced hyperalgesia instead of enkephalin-mediated analgesia. Nitric oxide (NO) is suggested to be involved in this process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available