4.5 Article

Mechanisms of ligand-induced desensitization of the 5-hydroxytryptamine2A receptor

Journal

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.300.2.468

Keywords

-

Funding

  1. NIMH NIH HHS [MH52369] Funding Source: Medline

Ask authors/readers for more resources

We have examined the cellular processes underlying the desensitization of the 5-hydroxytryptamine (5-HT)(2A) receptor induced by agonist or antagonist exposure. Treatment of C6 glioma cells with either 5-HT or the 5-HT2A receptor antagonist ketanserin resulted in an attenuation in 5-HT2A receptor function, specifically the accumulation of inositol phosphates stimulated by the partial agonist quipazine. 5-HT-induced desensitization of the 5-HT2A receptor involved receptor internalization through a clathrin- and dynamin-dependent process because it was prevented by concanavalin A, monodansylcadaverine, and by expression of the dominant negative mutants P-arrestin (319-418) and dynamin K44A. Although short-term (i.e., 10 min) 5-HT and ketanserin exposure resulted in the same degree of desensitization, ketanserin-induced desensitization was not prevented by these agents and did not involve receptor internalization. In contrast, prolonged ketanserin exposure (i.e., 2 h) resulted in 5-HT2A receptor internalization through a clathrin- and dynamin-dependent process, as was observed after agonist treatment. Inhibitors of protein kinase C or calcium-calmodulin kinase II did not attenuate or prevent 5-HT-induced desensitization of the receptor. 5-HT2A receptor desensitization induced by 5-HT and prolonged ketanserin treatment, but not by short-term ketanserin treatment, was prevented by the expression of the dominant negative mutant of G protein-coupled receptor kinase (GRK)2, GRK2-K220R, and by an anti-GRK2/3 antibody. Our data indicate a dual mechanism of early and late desensitization by the antagonist ketanserin. Short-term ketanserin treatment reduced the specific binding of the agonist radioligand [I-125](+/-)-1-(2,5-dimethoxy-4-lodophenyl)-2-aminopropane ([I-125]DOI) and the ability of 5'-guanylylimidodiphosphate to attenuate this binding, suggesting that at the early stage of antagonist-induced desensitization the capacity of the 5-HT2A receptor to couple to G protein is impaired.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available