4.7 Article Proceedings Paper

Needle anatomy changes with increasing tree age in Douglas-fir

Journal

TREE PHYSIOLOGY
Volume 22, Issue 2-3, Pages 129-136

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/treephys/22.2-3.129

Keywords

astrosclereids; cells; lignin; needles; structure

Categories

Ask authors/readers for more resources

Morphological differences between old-growth trees and saplings of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) may extend to differences in needle anatomy. We used microscopy with image analysis to compare and quantify anatomical parameters in cross sections of previous-year needles of old-growth Douglas-fir trees and saplings at the Wind River Canopy Crane site in Washington and at three sites in the Cascade Mountains of Oregon. We also compared needle anatomy across a chronosequence of 10-, 20-, 40- and 450-year-old Douglas-fir trees from the Wind River site. Anatomy differed significantly between needles of old-growth trees and saplings at all sites, suggesting a developmental change in needle anatomy with increasing tree age. Compared with needles of old-growth trees, needles of saplings were longer and had proportionately smaller vascular cylinders, larger resin canals and few hypodermal cells. Astrosclereids, which sequester lignin in their secondary cell walls and occupy space otherwise filled by photosynthetic cells, were scarce in needles of saplings but abundant in needles of old-growth trees. Needles of old-growth trees had an average of 11% less photosynthetic mesophyll area than needles of saplings. The percentage of non-photosynthetic area in needles increased significantly with increasing tree age from the chronosequence of 10-, 20-, 40- and 450-year-old trees at the Wind River site. This reduction in photosynthetic area may contribute to decreased growth rates in old trees.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available