4.4 Article

A practical approach for STEM image simulation based on the FFT multislice method

Journal

ULTRAMICROSCOPY
Volume 90, Issue 2-3, Pages 71-83

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0304-3991(01)00145-0

Keywords

STEM; HAADF; TDS; image simulation; multislice method

Categories

Ask authors/readers for more resources

It has been demonstrated that a high-angle annular dark-field (HAADF) STEM technique gives an image resolving atomic columns. Due to the diffusion of this technique and an improvement of its resolution, a practical procedure for image simulation becomes important for a quantitative interpretation of the HAADF image. In this report a new practical scheme for a STEM image simulation is developed based on the FFT multislice algorithm. Here, a HAADF intensity due to thermal diffuse scattering (TDS) is calculated from the absorptive potential corresponding to high-angle TDS and the wave function equivalent to the propagating probe within the sample. Contrary to the commonly used Bloch wave method, a coherent bright-field intensity and a coherent HAADF intensity are also obtained straightforwardly. The HAADF image contrast calculated for GaAs is not simply proportional to Z(2) as expected from the Rutherford scattering at high-angle, and the As/Ga contrast ratio depends on the specimen thickness. This suggests that the generation of the HAADF signal is appreciably affected by the coherent dynamical scattering. The developed procedure here will have a definitive advantage over the Bloch wave approach for simulating the HAADF images expected from a defect and interface or amorphous materials, and also the HAADF image obtained by using a Cs-corrected microscope. This is because the former requires a huge super cell, while the latter needs a large objective aperture including a large number of incident beam directions. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available