4.5 Article

Freeze-drying using vacuum-induced surface freezing

Journal

JOURNAL OF PHARMACEUTICAL SCIENCES
Volume 91, Issue 2, Pages 433-443

Publisher

JOHN WILEY & SONS INC
DOI: 10.1002/jps.10035

Keywords

freeze-drying; vacuum freezing; surface ice; mannitol; sucrose

Ask authors/readers for more resources

method of freezing during freeze-drying, which avoids undercooling of a solution and allows growth of large, dendritic ice crystals, was investigated. Aqueous solutions of mannitol, sucrose, or glycine were placed under a chamber vacuum of approximately 1 mbar at a shelf temperature of + 10degreesC. Under these conditions, the solutions exhibit surface freezing to form an ice layer of approximately 1-3 mm thickness. On releasing the vacuum and lowering the shelf temperature to below the freezing point of the ice in the solution, crystal growth occurs to yield large, chimney-like ice crystals. The duration of primary drying of a frozen cake as measured by using inverse comparative pressure measurement-was up to 20% shorter than when using a moderate freezing procedure (2 K shelf temperature per min). With mannitol, however, the residual moisture content of the final dried product was higher than with moderate freezing, and with sucrose and glycine there was no difference. These findings are related to the structures of the dried cakes formed during freezing, as examined by light microscopy and wide-angle X-ray diffraction. The introduction of an annealing step (4 h at a shelf temperature slightly above the onset melting point of the ice in the frozen cake) combined with the vacuum-induced surface freezing procedure maintains the rapid primary drying and produces a low residual moisture (0.2%) for the freeze-dried mannitol solution. (C) 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available