4.7 Article

Prevailing triple infection with Wolbachia in Callosobruchus chinensis (Coleoptera: Bruchidae)

Journal

MOLECULAR ECOLOGY
Volume 11, Issue 2, Pages 167-180

Publisher

WILEY
DOI: 10.1046/j.0962-1083.2001.01432.x

Keywords

Callosobruchus chinensis; cytoplasmic incompatibility; quantitative PCR; triple infection; Wolbachia; wsp phylogeny

Ask authors/readers for more resources

Prevailing triple infection with three distinct Wolbachia strains was identified in Japanese populations of the adzuki bean beetle, Callosobruchus chinensis. When a polymerase chain reaction (PCR) assay was conducted using universal primers for ftsZ and wsp, Wolbachia was detected in all the individuals examined, 288 males and 334 females from nine Japanese populations. PCR-restriction fragment length polymorphism (RFLP) analysis of cloned wsp gene fragments from single insects revealed that three types of wsp sequences coexist in the insects. Molecular phylogenetic analysis of the wsp sequences unequivocally demonstrated that C. chinensis harbours three phylogenetically distinct Wolbachia, tentatively designated as wBruCon, wBruOri and wBruAus, respectively. Diagnostic PCR analysis using specific primers demonstrated that, of 175 males and 235 females from nine local populations, infection frequencies with wBruCon, wBruOri and wBruAus were 100%, 96.3% and 97.0%, respectively. As for the infection status of individuals, triple infection (93.7%) dominated over double infection (6.1%) and single infection (0.2%). The amounts of wBruCon, wBruOri and wBruAus in field-collected adult insects were analysed by using a quantitative PCR technique in terms of wsp gene copies per individual insect. Irrespective of original populations, wBruCon and wBruOri (10(7)-10(8) wsp copies/insect) were consistently greater in amount than wBruAus (10(6)-10(7) wsp copies/insect), suggesting that the population sizes of the three Wolbachia strains are controlled, although the mechanism is unknown. Mating experiments suggested that the three Wolbachia cause cytoplasmic incompatibility at different levels of intensity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available