4.7 Article

Human brain oscillatory activity phase-locked to painful electrical stimulations: A multi-channel EEG study

Journal

HUMAN BRAIN MAPPING
Volume 15, Issue 2, Pages 112-123

Publisher

WILEY-BLACKWELL
DOI: 10.1002/hbm.10013

Keywords

human pain; median-nerve somatosensory-evoked potentials; phase-locked EEG rhythms; surface Laplacian; brain mapping

Funding

  1. Telethon [E.C0985] Funding Source: Medline

Ask authors/readers for more resources

The main aims of this study were 1) a fine spatial analysis of electroencephalographic (EEG) oscillations after galvanic painful stimulation (nonpainful stimulation as a reference) and 2) a comparative evaluation of phase- and nonphase-locked component of these EEG oscillations. Preliminary surface Laplacian transformation of EEG data (31 channels) reduced head volume conductor effects. EEG phase values were computed by FFT analysis and the statistical evaluation of these values was performed by Rayleigh test (P < 0.05). About 50% of the EEG single trials presented statistically the same FFT phase value of the evoked EEG oscillations (phase-locked single trials), indicating a preponderant phase-locked compared to nonphase-locked component. The remaining single trials showed random FFT phase values (nonphase-locked single trials), indicating a preponderant nonphase-locked compared to phase-locked component. Compared to nonpainful stimulation, painful stimulation increased phase-locked theta to gamma band responses in the contralateral hemisphere and decreased the phase-locked beta band response in the ipsilateral hemisphere. Furthermore, nonphase-locked alpha band response decreased in the ipsilateral Pronto-central area. In conclusion, both decreased and increased EEG oscillatory responses to galvanic painful stimulation would occur in parallel in different cortical regions and in the phase- and nonphase-locked EEG data sets. This enriches the actual debate on the mapping of event-related oscillatory activity of human brain. (C) 2002 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available