4.3 Article

Iron-induced oxidant stress in nonparenchymal liver cells: Mitochondrial derangement and fibrosis in acutely iron-dosed gerbils and its prevention by silybin

Journal

JOURNAL OF BIOENERGETICS AND BIOMEMBRANES
Volume 34, Issue 1, Pages 67-79

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1023/A:1013874804911

Keywords

iron; Kupffer cells; oxidative stress; mitochondrial dysfunction; fibrogenesis; gerbil

Ask authors/readers for more resources

Hepatic fibrosis due to iron overload is mediated by oxidant stress. The basic mechanisms underlying this process in vivo are still little understood. Acutely iron-dosed gerbils were assayed for lobular accumulation of hepatic lipid peroxidation by-products, oxidant-stress gene response, mitochondrial energy-dependent functions, and fibrogenesis. Iron overload in nonparenchymal cells caused an activation of hepatic stellate cells and fibrogenesis. Oxidant-stress gene response and accumulation of malondialdehyde-protein adducts were restricted to iron-filled nonparenchymal cells, sparing nearby hepatocytes. Concomitantly, a significant rise in the mitochondrial desferrioxamine-chelatable iron pool associated with the impairment of mitochondrial oxidative metabolism and the hepatic ATP decrease, was detected. Ultrastructural mitochondrial alterations were observed only in nonparenchymal cells. All biochemical and functional derangements were hindered by in vivo silybin administration which blocked completely fibrogenesis. Iron-induced oxidant stress in nonparenchymal cells appeared to bring about irreversible mitochondrial derangement associated with the onset of hepatic fibrosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available